Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lin-Hai Jing,^a Da-Bin Qin,^a Huan-Xia Zhang,^a Shao-Jin Gu,^a Gang Lei^a and Zhi-Hua Mao^b*

^aDepartment of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China, and ^bThe Centre of Test and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.108 Data-to-parameter ratio = 9.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4-Bis(imidazol-1-ylmethyl)naphthalene

In the title compound, $C_{18}H_{16}N_4$, the two imidazole rings are twisted away from the central naphthalene ring system by 81.4 (1) and 88.4 (1)°. The crystal packing is stabilized by C– $H \cdots N$ hydrogen bonds

Received 11 October 2005 Accepted 24 October 2005 Online 31 October 2005

Comment

Numerous flexible or rigid *N*-heterocyclic carbene precursors have been synthesized and studied. They attract considerable attention because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann & Kocher, 1997). We report here the crystal structure of the title compound, (I).

Bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is planar, with a maximum deviation of 0.048 (2) Å for atom C6. The dihedral angle between the two imidazole rings is $43.7 (1)^{\circ}$, and they are bound to the

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Figure 2

The crystal packing of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.

naphthalene ring system in a *cis* arrangement (Fig. 1). The N1/N2/C12–C14 and N3/N4/C16–C18 imidazole rings form dihedral angles of 81.4 (1) and 88.4 (1)°, respectively, with the naphthalene ring system. The crystal packing is stabilized by $C-H\cdots N$ hydrogen bonds (Fig. 2).

Experimental

Compound (I) was prepared according to the reported procedure of Dhal & Arnold (1992). Colourless single crystals suitable for X-ray diffraction were obtained by diffusion of diethyl ether vapour into a methanol solution.

Crystal data

$C_{18}H_{16}N_4$	$D_x = 1.314 \text{ Mg m}^{-3}$
$M_r = 288.35$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 20
a = 8.222 (4) Å	reflections
b = 19.541 (8) Å	$\theta = 4.5 - 7.4^{\circ}$
c = 9.956 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 114.31 \ (3)^{\circ}$	T = 293 (2) K
$V = 1457.8 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.28 \times 0.22 \times 0.18 \ \mathrm{mm}$
Data collection	
Enraf-Nonius CAD-4	$\theta_{\rm max} = 25.0^{\circ}$
Enraf–Nonius CAD-4 diffractometer	$\theta_{\max} = 25.0^{\circ}$ $h = -9 \rightarrow 8$
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans	$\theta_{\text{max}} = 25.0^{\circ}$ $h = -9 \rightarrow 8$ $k = 0 \rightarrow 23$
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none	$\theta_{\max} = 25.0^{\circ}$ $h = -9 \rightarrow 8$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 11$
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 2664 measured reflections	$\theta_{\max} = 25.0^{\circ}$ $h = -9 \rightarrow 8$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 11$ 3 standard reflections
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 2664 measured reflections 2568 independent reflections	$\theta_{\max} = 25.0^{\circ}$ $h = -9 \rightarrow 8$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 11$ 3 standard reflections every 300 reflections
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 2664 measured reflections 2568 independent reflections 1157 reflections with $I > 2\sigma(I)$	$\theta_{max} = 25.0^{\circ}$ $h = -9 \rightarrow 8$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 11$ 3 standard reflections every 300 reflections intensity decay: none

Refinement

All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ \AA}^{-3}$

Table 1Selected bond lengths (Å).

N1-C12	1.345 (3)	N3-C16	1.366 (4)
N1-C14	1.362 (3)	N3-C15	1.461 (3)
N1-C11	1.457 (3)	N4-C18	1.312 (4)
N2-C12	1.307 (4)	N4-C17	1.358 (4)
N2-C13	1.365 (4)	C4-C5	1.357 (4)
N3-C18	1.337 (3)	C5-C10	1.420 (3)

Table 2		
Hydrogen-bond	geometry	∕ (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···N1	0.95 (2)	2.48 (2)	2.828 (4)	102 (2)
$C12 - H12 \cdot \cdot \cdot N4^{i}$	1.01 (3)	2.55 (3)	3.465 (5)	152 (2)
$C14 - H14 \cdots N2^{n}$	0.95 (3)	2.53 (3)	3.416 (4)	155 (3)

Symmetry codes: (i) x - 1, y, z - 1; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

H atoms were located in a difference Fourier map and refined isotropically. The range of C–H bond lengths is 0.88 (3)–1.03 (3) Å.

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Centre for Test and Analysis, Sichuan University, for financial support.

References

- Dhal, P. K. & Arnold, F. H. (1992). Macromolecules, 25, 7051-7059.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic
- Association, Pittsburgh Meeting, Abstract PA104. Herrmann, W. A. (2002). *Angew. Chem. Int. Ed.* **41**, 1290–1309.
- Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.